
State Space Methods in RATS
Technical Paper No. 2010-2

Thomas A. Doan ∗

January 2010

∗Estima, 1560 Sherman Ave #510, Evanston, IL 60201 USA, email:tomd@estima.com
Prepared for special issue of the Journal of Statistical Software on software packages for state space
time series analysis.

1



1 Introduction

RATS is a general-purpose econometrics and programming package, with a specialty
in time series analysis. The instruction in RATS for handling state space models is
called DLM (for Dynamic Linear Models). This was introduced with version 5.00 in
2001. Since then, there have been many improvements. With version 8, the instruc-
tion has the following features:

∙ All component matrices can be fixed matrices, or time-varying formulas, or can
be computed using functions of arbitrary complexity.

∙ Multiple observables (yt with dimension > 1) are permitted, with proper han-
dling of situations where some components are missing, but some are present.

∙ Non-stationary roots in the transition matrix are treated with the “exact” (limit)
methods of Koopman (1997) and Durbin and Koopman (2002). The transition
matrix is analyzed automatically for stationary and non-stationary roots.

∙ The ergodic variance for the stationary (linear combinations of) states is com-
puted using the efficient Schur decomposition method described in Doan (2010).

∙ The calculations of the Kalman filter and smoother can switch under user con-
trol to use the last calculated values of the Kalman gain and predictive variances
to save time in large models with time-invariant component matrices.

With the RATS distribution, we include the worked examples from several textbooks
devoted to space-space models, including Durbin and Koopman (2002), Commandeur
and Koopman (2007) and West and Harrison (1997). These are also posted on our web
site at www.estima.com/textbookindex.shtml.

Our state space structure takes a bit broader form than the one described in the
introduction to this issue. Because the components are input to the DLM instruction
using short alphabetical names based upon our own description of the state space
model, we will use that from this point on in this article:1

Xt = AtXt−1 + Zt + Ftwt (1)
Yt = �t +C′tXt + vt (2)

The addition of the �t term to the measurement equation is only a minor matter of
convenience, since the identical model can be produced by subtracting �t from both
sides of the equation. However, the enhanced form of the state equation with the Zt
state shift can’t so easily be accomodated in the simpler form, particularly when the
state shift component is time-varying.

Given a state space model, you can choose to:
1Note that RATS uses a different timing on the components in the state equation.
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∙ Kalman filter, computing the likelihood function assuming Gaussian errors; this
also computes predictions for the states and the observables, the prediction er-
rors and variances for the predictions and states.

∙ Kalman smooth, with calculations of smoothed states and their variances, dis-
turbances and their variances.

∙ Simulate unconditionally, with random draws for the state and measurement
shocks, producing simulated states and observables.

∙ Simulate conditional on observed data, producing simulated states and shocks.

A recent addition to RATS is the instruction DSGE, which takes a model with expecta-
tional terms and solves it symbolically for a backwards-looking state space represen-
tation. The combination of DSGE and DLM can be used to evaluate the likelihood (for
Gibbs sampling) or directly estimate by maximum likelihood the deep parameters in
a DSGE.

This paper is organized as follows. Section 2 introduces the model used in the exam-
ple. Section 3 demonstrates Kalman smoothing, given values for the variances. Sec-
tion 4 shows the various ways to estimate the hyperparameters (variances). Section 5
discusses several types of calculated or graphed diagnostics for the state space model.
Section 6 shows how to forecast out-of-sample and Section 7 offers examples of the use
of both unconditional and conditional simulations. In all cases, we are providing only
the segment of code needed to demonstrate a technique. The full running examples
are available on our web site at www.estima.com/resources_articles.shtml.

2 The example

The model that we’ll use for the examples is the local level model, applied to the Nile
flow data, annual from 1871 to 1970. The model is

yt = �t + "t

�t = �t−1 + �t

where �t is the unobservable local level. The model has time-invariant components
A = C = F = 1, Z = � = 0. These are the default values for all but C. The
measurement error variance �2

" is input using the SV option, while the state shock
variance �2

� comes in through the SW option.

As with other Unobserved Components (UC) models, the state has non-stationary dy-
namics. To handle the initial conditions, we can use the option PRESAMPLE=DIFFUSE,
which indicates that the initial condition for the state is fully diffuse. This
is implemented using the “exact” method of Koopman (1997) and Durbin and
Koopman (2002). The same outcome will be obtained using the more flexible
PRESAMPLE=ERGODIC, which analyzes the transition matrix and determines its
roots.
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3 Kalman Smoothing

For now, we’ll take the component variances as given, and discuss estimation in Sec-
tion 4. We’ll peg them at �2

" = 15099 and �2
� = 1469.1 which are the maximum likeli-

hood values. The instruction for Kalman smoothing with the Nile data is:

dlm(a=1.0,c=1.0,sv=15099.0,sw=1469.1,presample=diffuse,y=nile,$
type=smooth) / xstates vstates

TYPE=SMOOTH chooses Kalman smoothing. The default analysis is Kalman filtering—
the extra calculations for Kalman smoothing aren’t done unless requested. The
XSTATES parameter gets the smoothed state estimates and VSTATES gets the
smoothed state variances. Since the state vector is (in almost all cases) bigger than
a single element, XSTATES is a time series of vectors and VSTATES is a time series
of (symmetric) matrices. Code for generating 90% confidence intervals and graphing
them is given next:

set a = %scalar(xstates)
set p = %scalar(vstates)
set lower = a+sqrt(p)*%invnormal(.05)
set upper = a+sqrt(p)*%invnormal(.95)
graph(footer="Figure 1. Smoothed state and 90% confidence intervals") 4
# nile
# a
# lower / 3
# upper / 3

SET is the main RATS instruction for creating and transforming time series. The
%SCALAR function selects the first element out of a vector or matrix, so the series Awill
be the time series of estimated states, and P the time series of estimated variances.
GRAPH is the time series graphing instruction; the / 3 on the last two lines forces the
upper and lower bounds to use the same color or pattern. The graph produced by this
is Figure 1.

4 Estimation of Hyperparameters

The DLM instruction will always, as a side effect, compute the log likelihood of the
model given the input variances. This can be maximized, with a wide range of
choices for optimization, allowing for both derivative-based hill-climbing techniques,
and slower but more flexible search methods. It also has the ability to (easily) incor-
porate equality or inequality constraints.

One way to estimate the two variances in the local level model is:
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Figure 1: Smoothed state and 90% confidence intervals

nonlin psi
compute psi=0.0
dlm(a=1.0,c=1.0,sv=1.0,sw=exp(psi),y=nile,$
presample=diffuse,method=bfgs,var=concentrate)

The NONLIN instruction declares the set of free parameters to be estimated—here,
that’s  = log

(
�2
�/�

2
"

)
. The measurement error variance is concentrated out, which

can sometimes be helpful in improving the behavior of difficult estimation problems.
The estimation method being used here is the hill-climbing method BFGS. The out-
put is shown in Table 1. Note that, while there are 100 data points, the likelihood is
calculated using only the final 99 of them. This is done automatically here because
of the diffuse initial conditions—the predictive variance for observation 1 is infinite,
and so it’s dropped from the calculation of the likelihood. DLM has an additional op-
tion CONDITION which can control the number of data points which are included in
the filtering calculations, but omitted from the likelihood used for estimation. This is
generally not needed, since DLM handles the diffuse states automatically, but is use-
ful when the number of non-stationary states isn’t known a priori, if, for instance,
autoregressive parameters are being estimated.

Both variances can also be estimated directly with:

nonlin sigsqeps sigsqeta
stats(noprint) nile
compute sigsqeps=.5*%variance,sigsqeta=.1*sigsqeps

*
dlm(a=1.0,c=1.0,sv=sigsqeps,sw=sigsqeta,y=nile,$

method=bfgs,presample=diffuse) 1871:1 1970:1

Direct estimation of the variances requires a bit more care with guess values. This
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DLM - Estimation by BFGS
Convergence in 6 Iterations. Final criterion was 0.0000001 <= 0.0000100
Annual Data From 1871:01 To 1970:01
Usable Observations 100
Rank of Observables 99
Log Likelihood -632.54563
Concentrated Variance 15098.51951564

Variable Coeff Std Error T-Stat Signif

********************************************************************************
1. PSI -2.329895195 1.012133212 -2.30196 0.02133715

Table 1: Estimation with Concentrated Variance

uses scalings of the series sample variance, which should get the order of magnitude
correct. The output is in Table 2.

DLM - Estimation by BFGS
Convergence in 9 Iterations. Final criterion was 0.0000000 <= 0.0000100
Annual Data From 1871:01 To 1970:01
Usable Observations 100
Rank of Observables 99
Log Likelihood -632.54563

Variable Coeff Std Error T-Stat Signif

********************************************************************************
1. SIGSQEPS 15098.510028 3126.130999 4.82978 0.00000137
2. SIGSQETA 1469.172357 1266.235944 1.16027 0.24593993

Table 2: Estimation with Both Variances

While not important here, the NONLIN instruction can also handle various constraints
on the parameters, either equality or inequality. With no change to the setup, we
could estimate this with �2

� pegged to zero (which here gives a model with a fixed
mean) using

nonlin sigsqeps sigsqeta=0.0
dlm(a=1.0,c=1.0,sv=sigsqeps,sw=sigsqeta,y=nile,$
method=bfgs,presample=diffuse) 1871:1 1970:1

In a more complex model, where there is some chance that a component variance
might be zero, the NONLIN instruction can be used to set an inequality constraint:

nonlin sigsqeps sigsqeta>=0.0
dlm(a=1.0,c=1.0,sv=sigsqeps,sw=sigsqeta,y=nile,$

method=bfgs,presample=diffuse) 1871:1 1970:1

This uses a penalty function variation on BFGS. Since it’s quite a bit slower than stan-
dard BFGS, we generally don’t recommend using it unless the simpler unconstrained
estimates fail to provide values in range. The equality constraints from the previous
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Figure 2: Standardized prediction errors

case, on the other hand, are done by taking the constrained parameter out of the pa-
rameter set and using standard BFGS, so it actually runs faster than unconstrained
BFGS.

5 Diagnostics

The most straightforward diagnostics come from the standardized residuals. These
can be computed with the help of the VHAT and SVHAT options. VHAT is used to fetch
the measurement errors and SVHAT the predictive variance. Again, these will be in
the form of a VECTOR (for VHAT) and a SYMMETRIC matrix (for SVHAT) to allow for
the possibility of multiple observables. The following generates standardized predic-
tive errors (into the series EHAT), graphs them (Figure 2) and does a standard set of
diagnostics on the recursive residuals (output in Table 3):

dlm(a=1.0,c=1.0,sv=sigsqeps,sw=sigsqeta,y=nile,$
method=bfgs,presample=diffuse,$
vhat=vhat,svhat=svhat) 1871:1 1970:1

set ehat = %scalar(vhat)/sqrt(%scalar(svhat))
graph(footer="Standardized residual",vgrid=||-2.0,2.0||)
# ehat
@STAMPDiags(ncorrs=9) ehat

The VGRID=||-2.0,2.0|| option on the GRAPH puts the horizontal lines at ±2. Note
that, because of the diffuse prior, the first standardized error is omitted. This is
handled automatically in the code because the SVHAT for 1871:1 is a missing value.

The diagnostics in Table 3 include a Ljung-Box Q test for serial correlation, a Jarque-
Bera normality test and a Goldfeld-Quandt style test for heteroscedasticity. The
STAMPDiags procedure also produces the graph of autocorrelations seen in Figure
3.

Durbin and Koopman (2002) recommend also computing auxiliary residuals, which
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Statistic Sig. Level
Q(9-1) 8.84 0.3557
Normality 0.12 0.9441
H(33) 0.61 0.1650

Table 3: State Space Model Diagnostics

Residual Analysis
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Q= 8.84 P-value 0.35569
AIC= 12.691 SBC= 12.743

Figure 3: Autocorrelations of prediction errors

are the Kalman smoothed estimates for the measurement errors and state distur-
bances. Large values for these can help identify outliers (in the measurement errors)
or structural shifts (in the state disturbances). These can be obtained using the VHAT
and WHAT options when Kalman smoothing. The results returned from those are stan-
dardized to mean zero, unit variance.

dlm(a=1.0,c=1.0,sv=sigsqeps,sw=sigsqeta,y=nile,$
type=smooth,presample=diffuse,$
vhat=vhat,what=what)

*
set outlier = %scalar(vhat)
diff(standardize) outlier
set break = %scalar(what)
diff(standardize) break

The following graphs both of these. This uses SPGRAPH instructions to create a graph
page with two panes. The result is Figure 4.
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Figure 4: Diagnostic plots for auxiliary residuals

spgraph(vfields=2,$
footer="Diagnostic plots for auxiliary residuals")

graph(vgrid=||-2.0,2.0||,hlabel="Observation residual")
# outlier
graph(vgrid=||-2.0,2.0||,hlabel="State residual")
# break
spgraph(done)

6 Forecasts

Out-of-sample forecasts can be generated by simply running a Kalman filter past the
end of the data set. When the Y value is missing, DLM does the Kalman “update”
step but not the “correction”. This is how embedded missing values are handled. For
out-of-sample forecasts, however, it’s generally more straightforward to Kalman filter
through the observed data, then run a separate filter into the forecast range.

This next code segment uses the X0 and SX0 options to feed in the final estimated
mean and variance for the states (from Kalman filtering over the sample) into the
Kalman filter for the forecast range. The YHAT and SVHAT options are used to get the
prediction and the predictive error variance for the dependent variable. You can also
get the predicted value of the state and its predictive variance using the standard
state parameters.
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Figure 5: Out-of-sample Forecasts with 50% CI

dlm(a=1.0,c=1.0,sv=15099.0,sw=1469.1,presample=diffuse,y=nile,$
type=filter) / xstates vstates

dlm(a=1.0,c=1.0,sv=15099.0,sw=1469.1,$
x0=xstates(1970:1),sx0=vstates(1970:1),$
yhat=yhat,svhat=svhat) 1971:1 1980:1

set forecast 1971:1 1980:1 = %scalar(yhat)
set stderr 1971:1 1980:1 = sqrt(%scalar(svhat))

The following organizes a graph of the forecasts with their 50% confidence interval.
Only forty years of actual data are included to give the forecast range enough space.
This produces Figure 5.

set lower 1971:1 1980:1 = forecast+%invnormal(.25)*stderr
set upper 1971:1 1980:1 = forecast+%invnormal(.75)*stderr
graph(footer="Out-of-sample Forecasts with 50% CI") 4
# nile 1931:1 1970:1
# forecast / 2
# lower / 3
# upper / 3

7 Simulations

There are two choices for random simulations of a model: TYPE=SIMULATE chooses
unconditional simulation, where shocks for the states and measurements are drawn
independently, and TYPE=CSIMULATE, where they are drawn subject to the require-
ment that the observed data are produced. TYPE=SIMULATE would generally be used
in out-of-sample operations, while TYPE=CSIMULATE is especially useful for Gibbs
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sampling, since it draws a set of shocks and states conditional on the data and other
parameters.

The following is an example of unconditional simulation. First, Kalman filtering is
used through the observed range of the data to get the end-of-period estimates of the
mean and variance of the state. Then 10000 realizations for the process over the
next fifty periods are generated. The maximum flow for each realization is recorded.
The percentiles are computed once the simulations are done. This could be used, for
instance, to estimate the level for 50-year or 100-year floods.

dlm(a=1.0,c=1.0,sv=15099.0,sw=1469.1,presample=diffuse,y=nile,$
type=filter) / xstates vstates

compute ndraws=10000
set maxflow 1 ndraws = 0.0
do reps=1,ndraws

dlm(a=1.0,c=1.0,sv=15099.0,sw=1469.1,$
x0=xstates(1970:1),sx0=vstates(1970:1),$
type=simulate,yhat=yhat) 1971:1 2020:1 xstates

set simflow 1971:1 2020:1 = %scalar(yhat)
ext(noprint) simflow
compute maxflow(reps)=%maximum

end do reps
stats(fractiles,nomoments) maxflow

Statistics on Series MAXFLOW
Observations 10000
Minimum 646.279562 Maximum 2277.525740
01-%ile 797.704496 99-%ile 1664.309419
05-%ile 884.530943 95-%ile 1498.885021
10-%ile 933.496769 90-%ile 1409.103502
25-%ile 1024.542961 75-%ile 1274.081468
Median 1135.600473

Table 4: Percentiles from Maximum Simulated Flows

The following is an example of the use of conditional simulation for Gibbs sampling.
The two hyperparameters are modeled as the precision ℎ of the measurement error
and the relative variance  of the state shock to the measurement error. The two
hyperparameters are given very loose priors, with ℎ being inverse gamma with 1
degree of freedom and  being gamma with 1 degree of freedom.

compute nuh=1.0
compute s2h=100.0ˆ2
compute hdraw=nuh/s2h

*
compute nupsi=1.0
compute s2psi=.1
compute psidraw=s2psi/nupsi
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Figure 6: Local level and 90% CI from Gibbs sampling

In the example, the Gibbs sampler is run with 100 burn-in draws and 2000 keeper
draws. DLM with TYPE=CSIMULATE does a draw from the joint distribution of the
measurement error and state disturbances subject to the simulated data hitting the
observed values for Y. The WHAT and VHAT options are used to get the simulated
values of the disturbances, while the states parameter gets the simulated values of
the states. This does the simulation conditional on the current draws for ℎ and  .

dlm(a=1.0,c=1.0,sv=1.0/hdraw,sw=psidraw/hdraw,y=nile,$
type=csimulate,presample=diffuse,$
what=what,vhat=vhat) / xstates

The hyperparameters are then drawn conditional on the just-created draws for the
disturbances. First  :

sstats / vhat(t)(1)ˆ2>>sumvsq what(t)(1)ˆ2>>sumwsq
compute psidraw=(hdraw*sumwsq+nupsi*s2psi)/%ranchisqr(%nobs+nupsi)

then ℎ:

compute hdraw=$
%ranchisqr(nuh+%nobs*2.0)/(nuh*s2h+sumvsq+sumwsq/psidraw)

Estimates of the local level and its 90% confidence interval are shown in Figure 6.
This is similar to Figure 1, but allows for the fact that the hyperparameters are esti-
mated, and not known.
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8 Conclusion

This paper has used a simple example to give a taste of how RATS can be used to work
with state space models. The DLM instruction has many options, allowing it to handle
a wide range of tasks. Its internal calculations for filtering, smoothing and simulation
have been highly optimized. When combined with the programming flexibility of the
RATS package, many models which are quite cumbersome when done with matrix
languages or less flexible packages can be done simply and quickly. We invite you to
check our web site or e-mail us for more information.
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